Differential Expression of TGF-β Isoforms During Differentiation of HaCaT Human Keratinocyte Cells: Implication for the Separate Role in Epidermal Differentiation

نویسندگان

  • Hang-Rae Cho
  • Seok-Beom Hong
  • Young Il Kim
  • Jin-Woo Lee
  • Nack-In Kim
چکیده

The three mammalian isoforms of transforming growth factor-beta(TGF-beta1, beta2, beta3) are potent regulators of cell growth, differentiation, and extracellular matrix deposition. To study their role in skin differentiation, we investigated the expression of TGF-beta isoforms on cell growth and differentiation induction of the human keratinocyte cell line, HaCaT by elevating the Ca(2+) concentration. An ELISA and RT-PCR assay revealed secreted TGF-beta 1 protein and TGF-beta 1 mRNA were increased during calcium-induced differentiation. In contrast, major differences were seen for TGF-beta 2 and TGF-beta 3 mRNA which were decreased during differentiation, but TGF-beta 2 and TGF-beta3 protein were not evident on an ELISA. These results suggest different functions for each TGF-beta isoforms in epidermal differentiation, such that TGF-beta 1 is associated with the more differentiated state, and TGF-beta 2 and TGF-beta 3 may be associated the more proliferated state.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Laminar Organization of Cerebral Cortex in Transforming Growth Factor Beta Mutant Mice

Transforming growth factor betas (TGF?s) are one of the most widespread and versatile cytokines. The three mammalian TGF? isoforms, ?1, ?2, and ?3, and their receptors regulate proliferation of neuronal precursors as well as survival and differentiation in neurons of developing and adult nervous system. Functions of TGF?s has a wide spectrum ranging from regulating cell proliferation and differ...

متن کامل

Epidermal tissue regeneration and stromal interaction in HaCaT cells is initiated by TGF-alpha.

The human keratinocyte cell line HaCaT expresses essentially all epidermal differentiation markers but exhibits deficiencies in tissue organization as surface transplants in nude mice and even more so in organotypic co-cultures with fibroblasts. Whereas tissue differentiation by normal keratinocytes (NEKs) is regulated by stromal interactions, this mechanism is impaired in HaCaT cells. This reg...

متن کامل

Analysis of Promyelocytic Leukemia in Human Embryonic Carcinoma Stem Cells During Retinoic Acid-Induced Neural Differentiation

Background: Promyelocytic leukemia protein (PML) is a tumor suppressor protein that is involved in myeloid cell differentiation in response to retinoic acid (RA). In addition, RA acts as a natural morphogen in neural development. Objectives: This study aimed to examine PML gene expression in different stages of in vitro neural differentiation of NT2 cells, and to investigate the possible role o...

متن کامل

TGF-β1 enhanced myocardial differentiation through inhibition of the Wnt/β-catenin pathway with rat BMSCs

Objective(s): To investigate and test the hypotheses that TGF-β1 enhanced myocardial differentiation through Wnt/β-catenin pathway with rat bone marrow mesenchymal stem cells (BMSCs).Materials and Methods: Lentiviral vectors carrying the TGF-β1 gene were transduced into rat BMSCs firstly. Then several kinds of experimental methods were u...

متن کامل

A decisive function of transforming growth factor-β/Smad signaling in tissue morphogenesis and differentiation of human HaCaT keratinocytes

The mechanism by which transforming growth factor-β (TGFβ) regulates differentiation in human epidermal keratinocytes is still poorly understood. To assess the role of Smad signaling, we engineered human HaCaT keratinocytes either expressing small interfering RNA against Smads2, 3, and 4 or overexpressing Smad7 and verified impaired Smad signaling as decreased Smad phosphorylation, aberrant nuc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2004